Jacobians of Compact Riemann Surfaces

Avital Berry

Motivation: Why should we consider compact Riemann surfaces? Let A be an abelian variety over \mathbb{C} . Then $A(\mathbb{C})$ inherits a complex structure as submanifold of $\mathbb{P}^n(\mathbb{C})$. It is a connected compact complex manifold and has an abelian group structure. Note that $A(\mathbb{C}) \cong \mathbb{V}/\Lambda$ where $\mathbb{V} \cong \mathbb{C}^3$ and $\Lambda \cong \mathbb{Z}^{23}$.

Let C be a smooth projective connected curve over C. Then C(C) is a compact connected Riemann surface. So we have

where J(X) for X a Riemann surface is to be defined. We want to complete the analytic side.

Remark: Every compact connected Riemann surface is an algebraic curve. [2] For the duration of the talk, unless stated otherwise, X is a compact connected Riemann surface of genus g.

Goals: (i) Define the Jacobian of X, J(X). (ii) Describe its structure as a complex torus. We will view it as the quotient $H^4(X, (\mathcal{Y}_X)/H^4(X, \mathbb{Z}_X))$ which is isomorphic to (Γ^3/Λ) for some lattice Λ . (iii) Classify line bundles on X. (iv) Define the first Chern class and use it to identify the Jacobian with a torus. (v) Show that $J(X) \cong H^0(X, \Omega^4_X)^*/H_4(X, \mathbb{Z})$ if time permits. (v) Play with the Abel-Jacobi map if we have the time. Definitions: (i) Div(X) is the free abelian group of points in X. (ii) A divisor is called principal if it equals $div(f) = \sum_{p} ord_{p}(f) \cdot p$ where C(X) is meromorphic functions on X, $ord_{p}(f)$ is the order of the pole/zero of f(p), and $fe(C(X)^{\times}$.

Notice that div is a homomorphism $\mathbb{C}(X)^{\times} \longrightarrow \text{Div}(X)$

and hence Princ(X) is a subgroup of Div(X). (iji) We call

$$Cl(X) = Div(X)/Princ(X)$$

the divisor class group. (iv) $Div^{\circ}(X)$ is the kernel of the degree map, i.e. $deg: Div(X) \rightarrow \mathbb{Z}$ $\Sigma_k n_k p_k \mapsto \Sigma_k n_k$. It is a non-trivial result that principal divisors have degree zero. So we have that Princ(X) is a subgroup of $Div^{\circ}(X)$ as well.

(v) Denote

We then have

$$0 \longrightarrow \mathcal{Cl}^{0}(X) \longrightarrow \mathcal{Cl}(X) \longrightarrow \mathbb{Z} \longrightarrow 0.$$

Theorem: Cl^o(X) can be given the structure of a g-dimensional complex torus, i.e. the quotient of a g-dimensional complex vector space by a lattice.

Definition: The Jacobian of X, J(X), is Cl°(X) together with the above structure.

Our strategy for the proof is: (i) Show $H^{4}(X, (\mathcal{I}_{X})/H^{4}(X, \mathbb{Z}_{X})$ is a torus in $H^{4}(X, (\mathcal{I}_{X}^{*}))$. (ii) Show this torus is exactly $CL^{0}(X) \subset H^{4}(X, (\mathcal{I}_{X}^{*}))$. This will be done by means of showing that both identify with the kernel of the Charn class map $c_{1}: H^{4}(X, (\mathcal{I}_{X}^{*})) \longrightarrow H^{2}(X, \mathbb{Z}) \cong \mathbb{Z}$.

Definitions: (i) A (differential) form on X is a section of the exterior algebra of the cotangent bundle over X. Differential 2-forms can be integrated over X. (ii) A form a is exact if there exists a form p such that $\alpha = dp$ (iii) A form a is closed if $d\alpha = 0$. (iv) The de Rham complex is the cochain complex $0 \rightarrow \Omega^2(X) \rightarrow \Omega^2$ where $\Omega^{i}(X)$ is smooth functions on X for i=0 and i-forms on X for i>0. The differential is defined by (a) dx is the differential of α for a 0-form α , (b) dda=0 for α a 0-form, (c) $d(\alpha \wedge \beta)=d\alpha \wedge \beta+$ $+(-1)^{i}(\alpha \wedge d\beta)$. The cohomology of this complex is the de Rham cohomology. Hig \cong Eclosed i-forms]/{exact i-forms}.

As a first step we must classify line bundles on X. Let M be a line bundle on X with $\phi_i: \mathcal{M}(\mathcal{U}_i) \cong \mathcal{O}_X(\mathcal{U}_i)$ local trivialization. Thus $\phi_i \phi_j^{-1}: \mathcal{O}_X(\mathcal{U}_ij) \cong \mathcal{O}_X(\mathcal{U}_ij)$. Hence $\phi_i \phi_j^{-1}$ is given by $f_{ij} \in \mathcal{O}_X(\mathcal{U}_{ij})^X$, i.e. f_{ij} is a nowhere zero holomorphic function. We see that

$$f_{ij}f_{jk}f_{ki} = \phi_i \phi_j^{-1} \phi_j \phi_k^{-1} \phi_k \phi_i^{-1} = 1.$$

Therefore f_{ij} defines a 1-cocycle for \mathcal{O}_X^{\times} .
We have the following isomorphisms

 $\{f_{ij}\}_{X} = \check{H}^{4}(X, \mathcal{O}_{X}^{*}) \xleftarrow{\cong} H^{4}(X, \mathcal{O}_{X}^{*}) \cong \{\mathcal{O}_{X}^{*} - \text{forsors}\}.$

Let P be an \mathcal{O}_X^* -torsor. So we have the action of \mathcal{O}_X^* on P. Then we have a line bundle

$$\mathsf{P}^{\mathfrak{G}^{\bullet}}_{\mathsf{X}} \mathcal{O}_{\mathsf{X}} \mathcal{O}_{\mathsf{X}} \mathsf{P}_{\mathsf{ic}}(\mathsf{X}).$$

Next assume we have a line bundle, M. We map M to $\underline{Isom}(\mathcal{O}_X, \mathcal{M})$. The action

 $\mathcal{O}_{\mathsf{X}}^{*} \times \underline{\mathsf{Isom}}(\mathcal{O}_{\mathsf{X}}, \mathcal{M}) \longrightarrow \underline{\mathsf{Isom}}(\mathcal{O}_{\mathsf{X}}, \mathcal{M})$

is given by $(g,f) \longrightarrow f \circ g.$ One can show $\underline{\mathrm{Isom}}((0_X, \mathcal{M})^{X^{\otimes^{x}}} \mathcal{O}_X \cong \mathcal{M}$ and $\underline{\mathrm{Isom}}(\mathcal{O}_X, \mathsf{P}^{X^{\otimes^{x}}} \mathcal{O}_X) \cong \mathsf{P}$ choose a trivializing cover for each. From this you get local isomorphisms to the trivial bundle or trivial torsor and show that they glue nicely on intersections.

From this we get:

Theorem: There is a bijection
$$H^{4}(X, 0_{X}^{*}) \longleftrightarrow \begin{cases} \text{isomorphism classes} \\ \text{of line bundles on } X \end{cases}$$

The short exact sequence (exponential sheaf sequence) $U \rightarrow \mathbb{Z}_X \longrightarrow \mathcal{O}_X \xrightarrow{e^{2\pi i}} \mathcal{O}_X^{\times} \longrightarrow 1$

gives rise to the exact sequence

 $\cdots \longrightarrow H^{4}(X, \mathbb{Z}_{X}) \longrightarrow H^{4}(X, \mathcal{O}_{X}) \longrightarrow H^{4}(X, \mathcal{O}_{X}^{*}) \longrightarrow \cdots$

This short exact sequence exists since the exponential defines a homomorphism $\mathcal{O}_X \longrightarrow \mathcal{O}_X^*$. For surjectivity let $s^{\epsilon}(\mathcal{O}_X^*(\mathcal{U}))$ take a cover of \mathcal{U} by disks

Ui. Then for each Ui we choose a logarithm and define $t_i:=\log_{u_i}S$. So we have that $s_{|U_i}=e^{2\pi v \cdot \cdot \cdot t_i}$ and thus the exponential map is surjective. Some normalization of \log_{u_i} might be necessary. We want to study the first group in the long exact sequence. Consider the exact sequence

$$0 \longrightarrow \mathbb{Z}_{\mathsf{X}} \longrightarrow \mathbb{R}_{\mathsf{X}} \longrightarrow \mathcal{U}(1)_{\mathsf{X}} \longrightarrow 0$$

from which we get $\longrightarrow H^{0}(X, \mathbb{R}_{X}) \longrightarrow H^{0}(X, U(1)_{X}) \longrightarrow H^{1}(X, \mathbb{Z}_{X}) \longrightarrow H^{1}(X, \mathbb{R}_{X}) \longrightarrow \cdots$. X is connected and therefore we have a identification $H^{0}(X, \mathbb{R}_{X}) \cong \mathbb{R} \longrightarrow U(1) \cong H^{0}(X, U(1)_{X})$. Hence $H^{1}(X, \mathbb{Z}_{X}) \longrightarrow H^{1}(X, \mathbb{R}_{X})$ is injective. Now we have $0 \longrightarrow \mathbb{R}_{X} \longrightarrow C^{\infty}_{\mathbb{R}} \xrightarrow{d} \in L^{1}_{\mathbb{R}, ce} \longrightarrow 0$

where $C_{\mathbb{R}}^{\infty}$ is the sheaf of real valued smooth functions and $E_{\mathbb{R},ce}^{1}$ is the sheaf of real valued closed forms. The map d is associated with the differential of the de Rham complex of a real manifold. To see that d is surjective let $s \in E_{\mathbb{R},ce}^{1}(U)$. Take Ui disks. By Poincaré lemma $s_{|u|}$ is exact. We define to by $s_{|u|} = dt_{i}$ and we have surjectivity. From this we have $\dots \to C_{\mathbb{R}}^{\infty}(X) \longrightarrow E_{\mathbb{R},ce}^{1}(X) \longrightarrow H^{1}(X, \mathbb{R}_{X}) \longrightarrow H^{1}(X, \mathbb{C}_{\mathbb{R}}^{\infty}) \longrightarrow \dots$. An element of $H^{1}(X, \mathbb{C}_{\mathbb{R}}^{\infty})$ is represented by a cocycle $f_{ij} \in C^{\infty}_{\mathbb{R}}(\mathcal{U}_{ij})$. Choose a smooth partition of unity ψ_i subordinate to the open cover \mathcal{U}_i . Let $\phi_i = \sum \psi_k f_{ik}$.

We compute

$$\phi_i - \phi_j = \sum_{k} \psi_k (f_{ik} - f_{jk}) = *.$$

By the cocycle condition

$$* = \sum_{k} \psi_{k} f_{ij} = f_{ij} \sum_{k} \psi_{k} = *.$$

Since we is a partition of unity

 $* = f_{ij}$. So f_{ij} is a coboundary and $H^{1}(X, C_{m}^{\infty}) = 0$.

From this we obtain a version of de Rham's theorem!

Theorem.

 $H^{1}(X,\mathbb{R}_{X}) \cong \{ \text{closed real } 1 \text{-forms} \}/\{ \text{exact real } 1 \text{-forms} \}.$ By de Rham's theorem, $H^{1}(X,\mathbb{R}_{X}) \text{ is a } 2g \text{-dimensional real vector space.}$

Proof: We have done most of the work, we just note that the image of $C^{\infty}_{\mathbf{R}}(X)$ in $E^{1}_{\mathbf{R},\mathbf{ce}}(X)$ is by definition the exact forms.

de Rham's theorem and what we have proven give us

$$H^{1}(X, \mathbb{R}_{X}) \cong H^{1}_{dR}(X) \cong H^{1}(X, \mathbb{R}).$$

For the dimension, consider the short exact sequence $0 \rightarrow \mathbb{C}_{X} \rightarrow \mathcal{O}_{X}^{1, hol} \rightarrow \Omega.$

We get a triangle $R\Gamma(X, \mathbb{C}_X) \longrightarrow R\Gamma(X, \mathcal{O}_X^{\text{tol}}) \longrightarrow R\Gamma(X, \Omega_X^{\text{t,hol}}) \longrightarrow \cdots$

Therefore

$$\chi(\mathbb{C}_{\times}) - \chi(\mathcal{L}_{\times}^{4,\text{los}}) = \chi(\mathcal{D}_{\times}^{\text{los}})$$

$$2 - \dim_{\mathbb{C}} H^{4}(X, \mathbb{C}_{\times}) + g - 1 = 1 - g$$

$$\dim_{\mathbb{R}} H^{4}(X, \mathbb{R}_{\times}) = \dim_{\mathbb{C}} H^{4}(X, \mathbb{C}_{\times}) = 2g. \qquad \Box$$

Consider next $H^{4}(X,\mathbb{Z}_{X}) \subset H^{4}(X,\mathbb{R}_{X})$. Like for \mathbb{R} we have an isomorphism

$$H^{4}(X, \mathbb{Z}_{X}) \cong H^{4}(X, \mathbb{Z}).$$

 $H^{4}(X, \mathbb{Z}_{X})$ can be identified with the subgroup
represented by closed 1-forms x such that
 $\int_{X} x \in \mathbb{Z}$
for all closed loops $T \subset X$. It is sufficient to check fo

For all closed loops $I \subset X$. It is sufficient to check for $T_{2,...,T_{2g}}$ a homology basis of $H_1(X,\mathbb{Z})$. Therefore $H^4(X,\mathbb{Z}_X)$ forms a lattice inside $H^4(X,\mathbb{R}_X)$.

Theorem: $H^{4}(X,\mathbb{Z})$ forms a lattice inside $H^{4}(X,\mathcal{O}_{X})$. Therefore the quotient is a g-dimensional complex torus. **Proof:** Since $H^{4}(X, \mathbb{Z})$ is a lattice in $H^{4}(X, \mathbb{R})$, we need to construct an isomorphism $\pi; H^{4}(X, \mathbb{R}) \xrightarrow{\cong} H^{4}(X, \mathcal{O}_{X})$ compatible with the maps $H^{1}(X, \mathbb{Z}) \longrightarrow H^{4}(X, \mathbb{R})$. The map π is the one induced by $\mathbb{R}_{X} \longrightarrow \mathcal{O}_{X}$. It is not obvious, but we have the following isomorphisms [3] $H^{1}(X, \mathbb{R}) \cong$ {harmonic real 1-forms}, $H^{4}(X, \mathcal{O}_{X}) \cong$ {antiholomorphic 1-forms}. Griven α we have $\pi(\alpha) = \alpha^{(0,1)} \in H^{1}(X, \mathcal{O}_{X})$. $H^{4}(X, \mathbb{R}) \xrightarrow{\pi} \{ah, 1-forms\}$ $f_{1}(\varepsilon) d_{Z} + f_{2}(\varepsilon) d_{\overline{z}} \longrightarrow f_{z}(\varepsilon) d_{\overline{z}}$ The inverse is the map sending $\mathbb{P}^{H^{1}}(X, \mathcal{O}_{X})$ to $\mathbb{P} + \overline{\mathbb{P}} \in H^{1}(X, \mathbb{R})$.

We can proceed to show that $Cl^{\circ}(X)$ coincides with the image of $H^{4}(X, \mathcal{O}_{X})$. For this we start by defining the first Chern class.

Proposition: M lies in the image of $H^{1}(X, \mathcal{O}_{X})$ iff $c_{1}(\mathcal{M})=0$. Where c_{1} is the connecting homomorphism $H^{1}(X, \mathcal{O}_{X}^{\times}) \longrightarrow H^{2}(X, \mathbb{Z})$ and $c_{1}(\mathcal{M})=c_{1}(\mathbb{I}f_{ij}\mathbb{I}).$

To understand c_1 better we will show another interpretation of it. We can map $c_1(\mathcal{M})$ to $H^2(X, C_X) \cong H^2(X, \mathbb{C}) \cong H^2_{dR, \mathbb{C}}(X)$ under the embedding $\mathbb{Z}_X \longrightarrow \mathbb{C}_X$. Then $c_1(\mathcal{M})$ is a differential form. We have a commutative diagram with exact rows

$$\omega_{ij} := \frac{1}{2\pi\sqrt{-1}} d \log(f_{ij}).$$

Wij is a holomorphic 1-form (can be thought of as smooth). By a partition of unity argument we can find α_i such that $\omega_{ij} = \alpha_i - \alpha_j$. Let $p_i = d\alpha_i$. When restricting to U_{ij} we get $p_i - p_j = d\alpha_i - d\alpha_j = d\omega_{ij} = \frac{1}{2\pi i - 1} dd \log(f_{ij}) = 0.$ So the piglue nicely. p is a 2-form and X is 2-dimensional (real) so we can integrate p over X to get a number in C because X is compact. Since there is an isomorphism $H^2(X,C) \cong C$ we can treat $c_1(M)$ as a number.

Proposition: $c_1(\mathcal{O}(D)) = \pm \deg D$ for a divisor D.

Proof: Suppose
$$X = \mathbb{P}_{c}^{4}$$
, $D = 1 \cdot 0$. Then
 $\cdots \rightarrow H^{4}(X, \mathcal{O}_{X}) \longrightarrow H^{4}(X, \mathcal{O}_{X}^{*}) \longrightarrow H^{2}(X, \mathbb{Z}) \longrightarrow H^{2}(X, \mathcal{O}_{X}) \rightarrow \cdots$.
 $U = \mathbb{Z} \cdot \mathcal{O}(1) = \mathbb{Z} = \mathbb{Z}$
So $c_{1}(\mathcal{O}(1)) = \pm 1 = \deg(\mathcal{O}(1))$. We claim this case is
sufficient.
Let X be arbitrary again. Suppose $D = n \cdot x$. By
Riemann-Roch if $n \gg 0$ is large enough there exists
 $f: X \longrightarrow \mathbb{P}_{c}^{4}$ such that $\mathcal{O}(D) = f^{*}(\mathcal{O}(1))$ and $D = f^{-4}(0)$ as
sets. Therefore

$$c_{1}(\mathcal{O}(\mathcal{D})) = f^{*}c_{1}(\mathcal{O}(1)) \in H^{2}(X, \mathbb{Z}) \xrightarrow{\cong} \mathbb{Z}$$

$$f^{*} \uparrow \quad (*) \quad \uparrow deg f = n$$

$$H^{2}(\mathbb{P}^{1}_{c}, \mathbb{Z}) \xrightarrow{\cong} \mathbb{Z}.$$

Provided that (*) commutes, we are done. But we can view O(1) as the line bundle associated to x as a divisor and then $f^*(O(x))$ is the line bundle associated to $f^*(x)$. So then we have $\deg f^*(x) = \deg f \cdot \deg(x)$ which

This completes the proof of the first theorem.

We want to give another description of J(X). We have

$$H^{1}(X, \mathcal{O}_{X}) \xrightarrow{\phi} H^{0}(X, \Omega^{1}_{X})^{*}$$

 $\omega \longmapsto (\rho \mapsto \int_{X} \rho \wedge \omega).$

where w is viewed as an antiholomorphic 1-form. We claim this is an isomorphism. Observe that both sides have dimension g and since if $p \neq 0$ then $\sum_{p \in \overline{p} \neq 0}$

and we have that the kernel is trivial. Under ϕ the image of H¹(X,Z) in H¹(X,O_X) is mapped to the image of H₁(X,Z) in H⁰(X, $-\Omega^{4}_{X}$)* by

Therefore

$$\mathcal{J}(\mathsf{X}) \cong H^{0}(\mathsf{X}, \Omega^{4}_{\mathsf{X}})^{*}/\mathcal{H}_{4}(\mathsf{X}, \mathbb{Z}).$$

We carry on to the final part where we discuss the Abel-Jacobi map.

Definition: Fix a basepoint poeX. Define the Abel-Jacobi map

Proposition: a is holomorphic.

Definition: The n-th symmetric product of X is $S^n X = X \times \cdots \times X / S_n$.

If $z_{1,...,z_n}$ are local coordinates of Xⁿ then the elemetary symmetric functions give us local coordinates $\sigma_i(z_{1,...,z_n})$ on SⁿX. Thus SⁿX is a complex manifold. SⁿX corresponds to effective divisors of degree n since $(x_{1,...,x_n}) \mapsto x_1 + ... + x_n$ is stable under permutation and $x_2 + ... + x_n$ is effective. Define

$$\alpha_n: S^n X \longrightarrow J(X)$$

$$x_2 + \dots + x_n \longmapsto x_1 - p_0 + \dots + x_n - p_0.$$

Theorem: (i) (Abel) If $D \in S^n X$ then the fiber $\alpha_n^{-1} \alpha_n(D)$ consists of all effective divisors linearly equivalent to D, i.e. D' such that D - D' is principal. (ii) (Jacobi) α_g is surjective.

Corollary: If X is an elliptic curve, i.e. genus 1, then $X \cong J(X)$.

Proof: Note that $\alpha_1 = \alpha$. So α is holomorphic and surjective. Let $p \in X$. Then $H^o(X, O(p))$ is a vector space over C and by Riemann-Roch is of dimension 1 and isomorphic to C. So p is the only effective divisor linearly equivalent to p. Hence α has degree 1 and is then an isomorphism.

Corollary: J(X) and $S^{3}X$ are bimeromorphically equivalent, i.e. there exists a meromorphic map from one the other which admits a meromorphic inverse.

- [1] Arapura The Jacobian of a Riemann Surface
- [2] Griffiths & Harris Principles of Algebraic Geometry
- [3] Arapura Riemann's Inequality and Riemann-Roch