Jacobians of Compact Riemann Surfaces

Avital Berry

Motivation: Why should we consider compact Riemann surfaces? Let A be an abelian variety over C. Then Ald inherits ^a complex structure as submanifold of $P^{n}(\mathbb{C})$. It is a connected compact complex manifold and has an abelian group structure. Note that $A(\mathbb{C}) \cong V/\Lambda$ where $V \cong \mathbb{C}^3$ and $\Lambda \cong \mathbb{Z}^{2s}$.

Let C be ^a smooth projective connected curve over $\mathbb C$. Then $C(\mathbb C)$ is a compact connected Riemann surface. So we have

where $J(X)$ for X a Riemann surface is to be defined. We want to complete the analytic side.

Remark: Every compact connected Riemann surface is an algebraic curve. [2]

For the duration of the talk unless stated otherwise, X is a compact connected Riemann surface of genus g.

Goals. (i) Define the Jacobian of X , $J(X)$. I Describe its structure as a complex torus. We will view it as the quotient $H^{1}(X,\mathcal{O}_{X})/H^{1}(X,\mathbb{Z}_{X})$ which is isomorphic to \mathbb{C}^3/\wedge for some lattice \wedge . iii Classify line bundles on X (iv) Define the first Chern class and use it to identify the Jacobian with ^a torus (v) Show that $J(X) \cong H^0(X, \Omega^1_X)^*/H_4(X, \mathbb{Z})$ if time permits (vi) Play with the Abel-Jacobi map if we have the time

Definitions: (i) Div(X) is the free abelian group of points in X . (ii) A divisor is called principal if it equals $div(f) = \sum_{p} ord_{p}(f) \cdot p$ where $C(X)$ is meromorphic functions on X , ordp (f) is the order of the pole/zero of $f(p)$, and $f \in \mathbb{C}(X)^{*}$.

Noticethat dir is ^a homomorphism $C(X)^{x} \longrightarrow D_{i}(X)$

and hence $Princ(X)$ is a subgroup of $Div(X)$. (iji) We call

$$
CL(X) = Div(X)/p_{\text{rinc}(X)}
$$

the divisor class Q_{ref} (iv) $Div^p(X)$ is the kernel of the degree map, i.e. $deg: Div(X) \rightarrow \mathbb{Z}$ $\Sigma_k n_k p_k \mapsto \Sigma_k n_k$. It is a non-trivial result that principal divisors have degree zero. So we have that $P_{\text{rinc}}(X)$ is a subgroup of $\text{Div}^o(X)$ as well

(v) Denote

$$
Cl^{0}(X) = Div^{0}(X) / Princ(X)
$$

We then have

$$
0 \longrightarrow CL^{0}(\mathsf{X}) \longrightarrow CL(\mathsf{X}) \longrightarrow \mathbb{Z} \longrightarrow 0.
$$

Theorem. $Cl^{o}(X)$ can be given the structure of a g-dimensional complex torus, i.e. the quotient of a g-dimensional complex vector space by a lattice.

Definition: The Jacobian of X , $J(X)$, is $Cl^{\circ}(X)$ together with the above structure.

Our strategy for the proof is. (i) Show $H^1(X, \mathcal{O}_X)/H^1(X, \mathbb{Z}_X)$ is a torus in $H^1(X, \mathcal{O}_X^X)$. (ii) Show this torus is exactly $CL^0(X) \subset H^1(X, \mathcal{O}_X^X)$. This will be done by means of showing that both identify with the kernel of the Chern class map c_1 : $H^4(X,\mathbb{O}_X^*) \longrightarrow H^2(X,\mathbb{Z}) \cong \mathbb{Z}$.

Definitions: (i) A (differential) form on X is a section of the exterior algebra of the cotangent bundle over X. Differential 2-forms can be integrated over X_{\cdot} (ii) A form a is exact if there exists a form p such that $\alpha = dp$ (iii) A form α is closed if $d\alpha = 0$. (iv) The de Rham complex is the cochain complex $0 \rightarrow \Omega^{2}(X) \xrightarrow{d} \Omega^{1}(X) \xrightarrow{d} \Omega^{2}(X) \rightarrow \cdots$

where $\Omega^{i}(X)$ is smooth functions on X for $i=0$ and i -forms on X for $i>0$. The differential is defined by (a) da is the differential of α for a 0 -form $\alpha_1(b)$ $dd\alpha = 0$ for α a 0-form, (c) $d(\alpha \wedge \beta) = d\alpha \wedge \beta$ + $+(-1)^{l}(\alpha \wedge d\beta).$ The cohomology of this complex is the de Rham $cohomology.$ Hin \cong Eclosed i-forms 3/ {exact i-forms}.

As a first step we must classify line bundles on X. Let M be a line bundle on X with ϕ_i : $M(U_i) \stackrel{\cong}{\longrightarrow} \mathcal{O}_X(U_i)$ $local trivialization.$ Thus $\phi_i \phi_i^{-1}$: $(\mathcal{O}_X(U_i)) \stackrel{\cong}{\longrightarrow} \mathcal{O}_X(U_i)$. Hence $\phi_i \phi_j$ ⁻¹ is given by fije $\mathcal{O}_X(\mathcal{U}_i)$ ^x, i.e. fij is a nowhere zero holomorphic function. We see that

$$
t_{ij}t_{jk}t_{ki} = \phi_i \phi_j^2 \phi_k \phi_k^2 = 1.
$$

Therefore f_{ij} defines a 1-cocycle for \mathcal{O}_X^* .
We have the following isomorphisms

$$
i\mathfrak{f}_{ij}\mathfrak{z}_{\mathcal{N}}^{\mathfrak{p}}=i\mathfrak{f}_{i}^{*}(X,\mathcal{O}_{X}^{*})\leftarrow^{\cong}i\mathfrak{f}_{i}(X,\mathcal{O}_{X}^{*})\cong i\mathcal{O}_{X}^{*}-torsors\mathfrak{f}_{i}.
$$

Let P be an \mathbb{O}_X^* torsor. So we have the action of \mathcal{O}_X^* on P . Then we have a line bundle

$$
\rho_{\mathsf{x}}^{\mathfrak{G}_{\mathsf{x}}^*} \mathfrak{g}_{\mathsf{x}} \epsilon \rho_{\mathsf{ic}}(\mathsf{x}).
$$

Next assume we have a line bundle, M . We map M to $\underline{\mathsf{Isom}}(\mathcal{O}_X,\mathcal{M})$. The action

 $\mathcal{O}_{X}^{*} \times \underline{\mathbb{I}}_{SOM}(\mathcal{O}_{X}, \mathcal{M}) \longrightarrow \underline{\mathbb{I}}_{SOM}(\mathcal{O}_{X}, \mathcal{M})$

is given by (g,f) fog. One can show $\underline{L}_{SOM}(\mathcal{O}_X, \mathcal{M}) \times^{\mathcal{O}_X^*} \mathcal{O}_X \cong \mathcal{M}$ and $\underline{Isom}(\mathcal{O}_X, P^{\times^{0^*_\kappa}}\mathcal{O}_X) \cong P$ choose a trivializing cover for each. From this you get local isomorphisms to the trivial bundle or trivial torso^r and show that they glue nicely on intersections.

From this we get

Theorem: There is a bijection
\n
$$
H^1(X, 0_X^*) \longleftrightarrow \begin{cases} \text{isomorphism classes} \\ \text{of line bundles on } X \end{cases}.
$$

The short exact sequence (exponential sheaf sequence) $0 \rightarrow \mathbb{Z}_X \rightarrow \mathcal{O}_X \xrightarrow{e^{2\pi i} \mathcal{O}_X} \mathcal{O}_X^{\times} \rightarrow 1$

gives rise to the exact sequence

 \cdots \rightarrow H⁴(X, \mathbb{Z}_{\times}) \rightarrow H⁴(X, \mathcal{O}_{X}) \rightarrow \rightarrow \cdots .

This short exact sequence exists since the exponential defines a homomorphism $\mathcal{O}_X \longrightarrow \mathcal{O}_X$. For surjectivity let $s \in \mathbb{O}_{X}^{*}(\mathcal{U})$ take a cover of \mathcal{U} by disks

 U_i . Then for each U_i we choose a logarithm and define $t_i := log_{u_i} s$. So we have that $s_{|u_i} = e^{2\pi \sqrt{x}} t_i$ and thus the exponential map is surjective. Some normalization of logui might be necessary. We want to study the first group in the long exact sequence. Consider the exact sequence

$$
0 \longrightarrow \mathbb{Z}_{x} \longrightarrow \mathbb{R}_{x} \longrightarrow \mathcal{U}(1)_{x} \longrightarrow 0
$$

from which we get \cdots \rightarrow H $^{\circ}$ (X, \mathcal{R}_{\times}) \rightarrow H $^{\circ}$ (X, $\mathcal{U}(1)_{\times}$) \rightarrow H $^{\circ}$ (\times , \mathcal{Z}_{\times}) \rightarrow H $^{\circ}$ (\times , \mathcal{R}_{\times}) \rightarrow \cdots . X is connected and therefore we have ^a identification $H^0(X,\mathbb{R}_X) \cong \mathbb{R}$ ---> $U(1) \cong H^0(X, U(1)_X)$. Hence $H^4(X,\mathbb{Z}_x) \longrightarrow H^4(X,\mathbb{R}_x)$ is injective. Now we have $0 \rightarrow R_{x} \rightarrow C_{R}^{\infty} \xrightarrow{d} \mathcal{E}_{R,cl}^{1} \rightarrow 0$ $\stackrel{\circ}{A}_{\stackrel{\prime}{\cdot}\mathfrak{n}}^4 \longrightarrow \stackrel{\circ}{A}_{\stackrel{\prime}{\cdot}\mathfrak{n}}^2 \longrightarrow \mathcal{O}$

where $C_{\mathbb{R}}^{\infty}$ is the sheaf of real valued smooth functions and $\mathcal{E}_{\text{R},ce}^{4}$ is the sheaf of real valued closed forms. The map d is associated with the differential of the de Rham complex of a real manifold. To see that d is surjective let se Eff, ce (U). Take Ui disks. By Poincaré lemma $s_{|u_i}$ is exact. We define ti by $s_{|u_i}=dt_i$ and we have surjectivity. From this we have $\cdots \rightarrow \widetilde{C}_{\mathbb{R}}^{\infty}(X) \rightarrow \mathcal{E}_{\mathbb{R},\text{ce}}^{1}(X) \rightarrow H^{4}(X,\mathbb{R}_{X}) \rightarrow H^{4}(X,\mathbb{C}_{\mathbb{R}}^{\infty}) \rightarrow \cdots$ An element of $H^1(X,\mathcal{C}_m^\infty)$ is represented by a cocycle

 f_{ij} e $C^{\infty}_{\mathbb{R}}(U_{ij})$. Choose a smooth partition of unity ψ_i subordinate to the open cover Ui. Let $\phi_i = \sum \psi_k f_{ik}$

We compute

$$
\phi_{\iota} - \phi_{j} = \sum_{\kappa} \psi_{\kappa} (f_{i\kappa} - f_{j\kappa}) = *.
$$

By the cocycle condition

$$
\mathcal{K} = \sum_{k} \psi_k f_{ij} = f_{ij} \sum_{k} \psi_k = *.
$$

Since $\psi_{\bm{k}}$ is a partition of unity

 $\dot{x} = f_{ii}$. So f_{ij} is a coboundary and $H^1(X, C^{\infty}_R) = 0$.

From this we obtain a version of de Rham's theorem.

Theorem

 $H^{4}(X, \mathbb{R}_{X})$ \cong L closed real 1-formss/texact real 1-forms By de Rham's theorem, $H^2(X, \mathbb{R}_X)$ is a 2g-dimensional real vector space

Proof: We have done most of the work, we just note that the image of $C^\infty_{\mathsf{R}}(\mathsf{X})$ in $\mathcal{E}^1_{\mathsf{R} \mathsf{c} \mathsf{c} \mathsf{c}}(\mathsf{X})$ is by definition the exact forms

de Rham's theorem and what we have proven give us
\n
$$
H^2(X, \mathbb{R}_X) \cong H^1_{dR}(X) \cong H^1(X, \mathbb{R}).
$$

For the dimension, consider the short exact sequence $0 \longrightarrow \mathbb{C}_X \longrightarrow \mathcal{O}_Y^{hol} \longrightarrow \Omega_X^{1, hol} \longrightarrow 0.$

Weget ^a triangle $\mathsf{R}\Gamma(\mathsf{X},\mathbb{C}_{\mathsf{X}})\longrightarrow\mathsf{R}\Gamma(\mathsf{X},\mathbb{C}_{\mathsf{X}}^{\mathsf{hol}})\longrightarrow\mathsf{R}\Gamma(\mathsf{X},\mathbb{C}_{\mathsf{X}}^{\mathsf{4},\mathsf{hol}})\longrightarrow\cdots.$

Therefore

$$
\chi(C_{x}) - \chi(\Omega_{x}^{4, bol}) = \chi((0_{x}^{bol}))
$$

2-dim_cH⁴(X, C_x) + g - 1 = 1-g
dim_aH⁴(X, R_x) = dim_cH⁴(X, C_x) = 2g.

Consider next $H^1(X,\mathbb{Z}_X) \subset H^1(X,\mathbb{R}_X)$. Like for $\mathbb R$ we have an isomorphism

$$
H^{4}(X,\mathbb{Z}_{X}) \cong H^{4}(X,\mathbb{Z}).
$$

H^{4}(X,\mathbb{Z}_{X}) can be identified with the subgroup
represented by closed 1-forms x such that

$$
\int_{\mathbb{R}} \alpha \in \mathbb{Z}
$$
for all closed loops $\Gamma \subset X$. It is sufficient to check for

for all closed loops $\mathsf{F}\textup{c}\mathsf{X}.$ It is sufficient to check for $r_1, ..., r_{2g}$ a homology basis of $H_1(X, \mathbb{Z})$. Therefore $H¹(X, Z_X)$ forms a lattice inside $H¹(X, R_X)$.

Theorem: $H^4(X,\mathbb{Z})$ forms a lattice inside $H^4(X,\mathcal{O}_X)$. I herefore the quotient is a g dimensional complex torus

Proof: Since $H^2(X,\mathbb{Z})$ is a lattice in $H^2(X,\mathbb{R})$, we need to construct an isomorphism π iH⁴(X,R) =>H²(X, θ_x) compatible with the maps $H^1(X,\mathbb{Z}) \longrightarrow H^1(X,\mathbb{R})$. The map IT is the one induced by $R_X \rightarrow \mathcal{O}_X$. It is not obvious, but we have the following isomorphisms [3] $H^1(X,\mathbb{R})\cong\{\text{harmonic real 1-forms}\},$ $H⁴(X, \mathcal{O}_X) \cong$ fantiholomorphic 1-forms3. Given a we have $\pi(a) = \alpha^{(0,1)} \in H^1(X,\mathcal{O}_X)$. $H^{1}(X,\mathbb{R}) \longrightarrow H^{1}(X,\mathcal{O}_{X})$ t
h.r. 1-forms3-⁷⁷ s{a.h. 1-forms $f_4(t)dt + f_2(t)dt = -3f_2(t)dt$ The inverse is the map sending $p e H^1(X,\mathcal{O}_X)$ to $B + \overline{B} \in H^1(X, \mathbb{R}).$

Now that we have shown that the image of H⁴(X,0x) in H⁴(X,0x) is a torus. Recall
H⁴(X,Z)
$$
\longrightarrow
$$
 H⁴(X,0x) \longrightarrow H⁴(X,0x) \longrightarrow H²(X,Z) \rightarrow 0.
H⁴(X,R)

We can proceed to show that $Cl^o(X)$ coincides with the image of $H^4(X, U_X)$. For this we start by defining the first Chern class.

Proposition: M lies in the image of $H^*(X,\mathcal{O}_X)$ iff $c_1(M)=0$. Where c_1 is the connecting homomorphism $H^1(X,\mathcal{O}_X^*)\longrightarrow H^2(X,\mathbb{Z})$ and $c_1(\mathcal{M})=c_1(\tilde{L}f_{ij}),$

To understand c1 better we will show another interpretation of it. We can map $c_1(\mathcal{H})$ to $H²(X, \mathcal{L}_X) \cong H²(X, \mathbb{C}) \cong H²_{dR,g}(\times)$ under the embedding \mathbb{Z}_{X} \rightarrow C_X. Then c₁(χ) is a differential form. We have a commutative diagram with exact rows

$$
0 \rightarrow \mathbb{Z}_{\times} \longrightarrow \mathcal{O}_{\times} \longrightarrow \mathcal{O}_{\times}^{\times} \longrightarrow 1
$$

$$
0 \rightarrow \mathbb{C}_{\times} \longrightarrow \mathcal{O}_{\times} \xrightarrow{d} \Omega_{\times}^{1} \longrightarrow 0
$$

where d
$$
logf = df/f
$$
. We have
\n
$$
\cdots \rightarrow H^{2}(X, \mathcal{O}_{X}) \rightarrow H^{2}(X, \mathcal{O}_{X}) \rightarrow H^{2}(X, \mathcal{O}_{X}) \rightarrow \cdots
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$
\n
$$
\cdots \rightarrow H^{2}(X, \mathcal{O}_{X}) \rightarrow H^{2}(X, \mathcal{O}_{X}) \stackrel{\cong}{\rightarrow} H^{2}(X, \mathcal{O}) \rightarrow H^{2}(X, \mathcal{O}_{X}) \rightarrow \cdots
$$
\nfrom which we get that c₁([f_{ij}]) is the coboundary
\nof

$$
\omega_{ij} = \frac{1}{2\pi\sqrt{-1}} d \log(F_{ij}).
$$

 ω ij is a holomorphic 1-form (con be thought of as smooth). By a partition of unity argument we can find α_i such that ω_{ij} = α_i - α_j . Let p_i =dai. When restricting to U ij we get $p_i - p_j = d\alpha_i - d\alpha_j = d\omega_{ij} =$ $=\frac{1}{2\pi\epsilon T}ddb\varphi(\varphi_{ij})=0.$

So the p_i glue nicely. p is a 2-form and X is 2-dimensional (real) so we can integrate p over X to get a number in $\mathcal L$ because X is compact. Since there is an isomorphism $H^2(X,\mathcal{L}) \cong \mathbb{C}$ we can treat $c_1(M)$ as a number.

Proposition. $c_1(\mathbb{U}(D)) = \pm deg D$ for a divisor D

Proof: Suppose
$$
X = P_{\alpha}
$$
, $D = 1.0$. Then
\n
$$
... \rightarrow H^{1}(X, \theta_{X}) \rightarrow H^{4}(X, \theta_{X}) \rightarrow H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X, \theta_{X}) \rightarrow ...
$$
\n
$$
\begin{array}{ccc}\n\vdots & \vdots & \vdots \\
\theta & \mathbb{Z} \cdot \theta(1) & \mathbb{Z} & \theta \\
\end{array}
$$
\nSo $c_{1}(\theta(4)) = \pm 1 = \text{deg}(\theta(1))$. We claim this case is sufficient.
\nLet X be arbitrary again. Suppose $D = n \times$. By
\nRiemann-Roch if $n \gg 0$ is large enough there exists
\nf: $X \rightarrow P_{\alpha}^{\alpha}$ such that $\theta(0) = f^{*}(\theta(1)$ and $D = f^{-1}(0)$ as
\nsets. Therefore

$$
c_1(\mathcal{U}(\mathcal{D})) = f^* c_1(\mathcal{O}(1)) \in H^2(X, \mathbb{Z}) \xrightarrow{\cong} \mathbb{Z}
$$

$$
f^* \uparrow (\mathbb{R}^2, \mathbb{Z}) \xrightarrow{\cong} \mathbb{Z}.
$$

$$
H^2(\mathbb{P}^1_c, \mathbb{Z}) \xrightarrow{\cong} \mathbb{Z}.
$$

Provided that $(*)$ commutes, we are done. But we can view $O(1)$ as the line bundle associated to x as a divisor and then $f^*(\Omega(x))$ is the line bundle associated to $f^{*}(x)$. So then we have $deg f^{*}(x) = deg f \cdot deg(x)$ which

implies degf ⁿ ^O

This completes the proof of the first theorem

We want to give another description of
$$
J(X)
$$
. We have
\n $H^1(X, \mathcal{O}_X) \xrightarrow{\Phi} H^0(X, \Omega_X^1)^*$
\n $\omega \longmapsto (\beta \longmapsto \int_X \beta \wedge \omega).$

where w is viewed as an antiholomorphic 1-form. We claim this is an isomorphism. Observe that both sides have dimension g and since it p +0 then
. $Jp\wedge\bar{p}$ = 0

and we have that the kernel is trivial. Under ϕ the image of $H^1(X,\mathbb{Z})$ in $H^1(X,\mathcal{O}_X)$ is mapped to the image of $H_1(X,\mathbb{Z})$ in $H^0(X,\Omega_X^4)^*$ by

$$
\text{supp}\, \mathcal{L}_{\text{supp}}
$$

Therefore

$$
\mathcal{J}(X) \cong H^{0}(X, \Omega^{1}_{X})^{*}/\mathcal{H}_{\mathbf{1}}(X, \mathbb{Z}).
$$

We carry on to the final part where we discuss the Abel-Jacobi map.

Definition: Fix a basepoint $p_o \in X$. Define the Abel-Jacobi map

$$
\alpha: X \rightarrow J(X)
$$

$$
X \rightarrow X - p_0
$$

Proposition: α is holomorphic.

Definition. The n-th symmetric product of X is $S^nX = X^{x...x}X/S_n$.

If $z_{4},...,z_{n}$ are local coordinates of X^{n} then the elementary symmetric functions give us local coordinates σ_i (z_1 ,..., z_n) on S^nX . Thus S^nX is a complex manifold. $SⁿX$ corresponds to effective divisors of degree n since $(x_{1},...,x_{2}) \mapsto x_{1}+...+x_{n}$ is stable under permutation and $x_1 + ... + x_n$ is effective. Define

$$
\alpha_n: S^n \times \longrightarrow J(X)
$$

$$
x_1 + ... + x_n \longmapsto x_1 - p_0 + ... + x_n - p_0.
$$

Theorem: (i) (Abel) If DeS^nX then the fiber α_n^{-1} α_n (D) consists of all effective divisors linearly equivalent to D , i.e. D' such that $D-D'$ is principal. (ii) (Jacobi) ag is surjective.

Corollary: If X is an elliptic curve, i.e. genus 1 , then $X \cong J(X)$.

Proof. Note that $\alpha_1 = \alpha$. So α is holomorphic and surjective. Let $p \in X$. Then $H^0(X, \mathcal{O}(p))$ is a vector space over Cl and by Riemann Roch is of dimension 1 and isomorphic to C. So p is the only effective divisor linearly equivalent to p. Hence a has degree 1 and is then an isomorphism. \Box

 $Corollary: J(X)$ and S^3X are bimeromorphically equivalent, i.e. there exists a meromorphic map from one the other which admits ^a meromorphic inverse

- [1] Arapura The Jacobian of a Riemann Surface
- [2] Griffiths & Harris Principles of Algebraic Geometry
- [3] Arapura Riemann's Inequality and Riemann-Roch